Probing the Peripheral Site of Human Butyrylcholinesterase
نویسندگان
چکیده
Acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) catalyze the hydrolysis of the neurotransmitter acetylcholine and, thereby, function as coregulators of cholinergic neurotransmission. For both enzymes, hydrolysis takes place near the bottom of a 20 Å deep active site gorge. A number of amino acid residues within the gorge have been identified as important in facilitating efficient catalysis and inhibitor binding. Of particular interest is the catalytic triad, consisting of serine, histidine, and glutamate residues, that mediates hydrolysis. Another site influencing the catalytic process is located above the catalytic triad toward the periphery of the active site gorge. This peripheral site (P-site) contains a number of aromatic amino acid residues as well as an aspartate residue that is able to interact with cationic substrates and guide them down the gorge to the catalytic triad. In human AChE, certain aryl residues in the vicinity of the anionic aspartate residue (D74), such as W286, have been implicated in ligand binding and have therefore been considered part of the P-site of the enzyme. The present study was undertaken to explore the P-site of human BuChE and determine whether, like AChE, aromatic side chains near the peripheral aspartate (D70) of this enzyme contribute to ligand binding. Results obtained, utilizing inhibitor competition studies and BuChE mutant species, indicate the participation of aryl residues (F329 and Y332) in the E-helix component of the BuChE active site gorge, along with the anionic aspartate residue (D70), in binding ligands to the P-site of the enzyme.
منابع مشابه
Design, synthesis and evaluation of difunctionalized 4-hydroxybenzaldehyde derivatives as novel cholinesterase inhibitors.
A series of difunctionalized 4-hydroxybenzaldehyde derivatives were designed, synthesized and evaluated as cholinesterase (acetylcholinesterase (AChE) and butyrylcholinesterase (BChE)) inhibitors. The results demonstrated that all the compounds had more potent AChE and BChE inhibitory activities than galanthamine-HBr, one of the best cholinesterase inhibitors known so far. The inhibition mechan...
متن کاملProbing the Binding of Valacyclovir Hydrochloride to the Human Serum Albumin
UV-visible and Fluorescence spectroscopic methods were employed to study the interaction of human serum albumin (HSA) with Valacyclovir Hydrochloride. Additionally, molecular dynamics and molecular docking simulations were used to visualize and specify the binding site of Valacyclovir Hydrochloride. The Stern-Volmer and van't Hoff equations along with spectroscopic observations, were used to de...
متن کاملAcetylcholinesterase Accelerates Assembly of Amyloid-β-Peptides into Alzheimer's Fibrils: Possible Role of the Peripheral Site of the Enzyme
Acetylcholinesterase (AChE), an important component of cholinergic synapses, colocalizes with amyloid-beta peptide (A beta) deposits of Alzheimer's brain. We report here that bovine brain AChE, as well as the human and mouse recombinant enzyme, accelerates amyloid formation from wild-type A beta and a mutant A beta peptide, which alone produces few amyloid-like fibrils. The action of AChE was i...
متن کاملNovel huprine derivatives with inhibitory activity toward β-amyloid aggregation and formation as disease-modifying anti-Alzheimer drug candidates.
A new family of dual binding site acetylcholinesterase (AChE) inhibitors has been designed, synthesized, and tested for their ability to inhibit AChE, butyrylcholinesterase (BChE), AChE-induced and self-induced β-amyloid (Aβ) aggregation and β-secretase (BACE-1), and to cross the blood-brain barrier. The new heterodimers consist of a unit of racemic or enantiopure huprine Y or X and a donepezil...
متن کامل